3.36 \(\int \frac{(d+c d x)^4 (a+b \tanh ^{-1}(c x))}{x^2} \, dx\)

Optimal. Leaf size=178 \[ -2 b c d^4 \text{PolyLog}(2,-c x)+2 b c d^4 \text{PolyLog}(2,c x)+\frac{1}{3} c^4 d^4 x^3 \left (a+b \tanh ^{-1}(c x)\right )+2 c^3 d^4 x^2 \left (a+b \tanh ^{-1}(c x)\right )-\frac{d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+6 a c^2 d^4 x+4 a c d^4 \log (x)+\frac{1}{6} b c^3 d^4 x^2+\frac{8}{3} b c d^4 \log \left (1-c^2 x^2\right )+2 b c^2 d^4 x+6 b c^2 d^4 x \tanh ^{-1}(c x)+b c d^4 \log (x)-2 b c d^4 \tanh ^{-1}(c x) \]

[Out]

6*a*c^2*d^4*x + 2*b*c^2*d^4*x + (b*c^3*d^4*x^2)/6 - 2*b*c*d^4*ArcTanh[c*x] + 6*b*c^2*d^4*x*ArcTanh[c*x] - (d^4
*(a + b*ArcTanh[c*x]))/x + 2*c^3*d^4*x^2*(a + b*ArcTanh[c*x]) + (c^4*d^4*x^3*(a + b*ArcTanh[c*x]))/3 + 4*a*c*d
^4*Log[x] + b*c*d^4*Log[x] + (8*b*c*d^4*Log[1 - c^2*x^2])/3 - 2*b*c*d^4*PolyLog[2, -(c*x)] + 2*b*c*d^4*PolyLog
[2, c*x]

________________________________________________________________________________________

Rubi [A]  time = 0.199811, antiderivative size = 178, normalized size of antiderivative = 1., number of steps used = 18, number of rules used = 12, integrand size = 20, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.6, Rules used = {5940, 5910, 260, 5916, 266, 36, 29, 31, 5912, 321, 206, 43} \[ -2 b c d^4 \text{PolyLog}(2,-c x)+2 b c d^4 \text{PolyLog}(2,c x)+\frac{1}{3} c^4 d^4 x^3 \left (a+b \tanh ^{-1}(c x)\right )+2 c^3 d^4 x^2 \left (a+b \tanh ^{-1}(c x)\right )-\frac{d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+6 a c^2 d^4 x+4 a c d^4 \log (x)+\frac{1}{6} b c^3 d^4 x^2+\frac{8}{3} b c d^4 \log \left (1-c^2 x^2\right )+2 b c^2 d^4 x+6 b c^2 d^4 x \tanh ^{-1}(c x)+b c d^4 \log (x)-2 b c d^4 \tanh ^{-1}(c x) \]

Antiderivative was successfully verified.

[In]

Int[((d + c*d*x)^4*(a + b*ArcTanh[c*x]))/x^2,x]

[Out]

6*a*c^2*d^4*x + 2*b*c^2*d^4*x + (b*c^3*d^4*x^2)/6 - 2*b*c*d^4*ArcTanh[c*x] + 6*b*c^2*d^4*x*ArcTanh[c*x] - (d^4
*(a + b*ArcTanh[c*x]))/x + 2*c^3*d^4*x^2*(a + b*ArcTanh[c*x]) + (c^4*d^4*x^3*(a + b*ArcTanh[c*x]))/3 + 4*a*c*d
^4*Log[x] + b*c*d^4*Log[x] + (8*b*c*d^4*Log[1 - c^2*x^2])/3 - 2*b*c*d^4*PolyLog[2, -(c*x)] + 2*b*c*d^4*PolyLog
[2, c*x]

Rule 5940

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((f_.)*(x_))^(m_.)*((d_) + (e_.)*(x_))^(q_.), x_Symbol] :> Int[E
xpandIntegrand[(a + b*ArcTanh[c*x])^p, (f*x)^m*(d + e*x)^q, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && IGtQ[
p, 0] && IntegerQ[q] && (GtQ[q, 0] || NeQ[a, 0] || IntegerQ[m])

Rule 5910

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.), x_Symbol] :> Simp[x*(a + b*ArcTanh[c*x])^p, x] - Dist[b*c*p, In
t[(x*(a + b*ArcTanh[c*x])^(p - 1))/(1 - c^2*x^2), x], x] /; FreeQ[{a, b, c}, x] && IGtQ[p, 0]

Rule 260

Int[(x_)^(m_.)/((a_) + (b_.)*(x_)^(n_)), x_Symbol] :> Simp[Log[RemoveContent[a + b*x^n, x]]/(b*n), x] /; FreeQ
[{a, b, m, n}, x] && EqQ[m, n - 1]

Rule 5916

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))^(p_.)*((d_.)*(x_))^(m_.), x_Symbol] :> Simp[((d*x)^(m + 1)*(a + b*ArcT
anh[c*x])^p)/(d*(m + 1)), x] - Dist[(b*c*p)/(d*(m + 1)), Int[((d*x)^(m + 1)*(a + b*ArcTanh[c*x])^(p - 1))/(1 -
 c^2*x^2), x], x] /; FreeQ[{a, b, c, d, m}, x] && IGtQ[p, 0] && (EqQ[p, 1] || IntegerQ[m]) && NeQ[m, -1]

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rule 36

Int[1/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :> Dist[b/(b*c - a*d), Int[1/(a + b*x), x], x] -
Dist[d/(b*c - a*d), Int[1/(c + d*x), x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0]

Rule 29

Int[(x_)^(-1), x_Symbol] :> Simp[Log[x], x]

Rule 31

Int[((a_) + (b_.)*(x_))^(-1), x_Symbol] :> Simp[Log[RemoveContent[a + b*x, x]]/b, x] /; FreeQ[{a, b}, x]

Rule 5912

Int[((a_.) + ArcTanh[(c_.)*(x_)]*(b_.))/(x_), x_Symbol] :> Simp[a*Log[x], x] + (-Simp[(b*PolyLog[2, -(c*x)])/2
, x] + Simp[(b*PolyLog[2, c*x])/2, x]) /; FreeQ[{a, b, c}, x]

Rule 321

Int[((c_.)*(x_))^(m_)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Simp[(c^(n - 1)*(c*x)^(m - n + 1)*(a + b*x^n
)^(p + 1))/(b*(m + n*p + 1)), x] - Dist[(a*c^n*(m - n + 1))/(b*(m + n*p + 1)), Int[(c*x)^(m - n)*(a + b*x^n)^p
, x], x] /; FreeQ[{a, b, c, p}, x] && IGtQ[n, 0] && GtQ[m, n - 1] && NeQ[m + n*p + 1, 0] && IntBinomialQ[a, b,
 c, n, m, p, x]

Rule 206

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1*ArcTanh[(Rt[-b, 2]*x)/Rt[a, 2]])/(Rt[a, 2]*Rt[-b, 2]), x]
 /; FreeQ[{a, b}, x] && NegQ[a/b] && (GtQ[a, 0] || LtQ[b, 0])

Rule 43

Int[((a_.) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d
*x)^n, x], x] /; FreeQ[{a, b, c, d, n}, x] && NeQ[b*c - a*d, 0] && IGtQ[m, 0] && ( !IntegerQ[n] || (EqQ[c, 0]
&& LeQ[7*m + 4*n + 4, 0]) || LtQ[9*m + 5*(n + 1), 0] || GtQ[m + n + 2, 0])

Rubi steps

\begin{align*} \int \frac{(d+c d x)^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2} \, dx &=\int \left (6 c^2 d^4 \left (a+b \tanh ^{-1}(c x)\right )+\frac{d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x^2}+\frac{4 c d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+4 c^3 d^4 x \left (a+b \tanh ^{-1}(c x)\right )+c^4 d^4 x^2 \left (a+b \tanh ^{-1}(c x)\right )\right ) \, dx\\ &=d^4 \int \frac{a+b \tanh ^{-1}(c x)}{x^2} \, dx+\left (4 c d^4\right ) \int \frac{a+b \tanh ^{-1}(c x)}{x} \, dx+\left (6 c^2 d^4\right ) \int \left (a+b \tanh ^{-1}(c x)\right ) \, dx+\left (4 c^3 d^4\right ) \int x \left (a+b \tanh ^{-1}(c x)\right ) \, dx+\left (c^4 d^4\right ) \int x^2 \left (a+b \tanh ^{-1}(c x)\right ) \, dx\\ &=6 a c^2 d^4 x-\frac{d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+2 c^3 d^4 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac{1}{3} c^4 d^4 x^3 \left (a+b \tanh ^{-1}(c x)\right )+4 a c d^4 \log (x)-2 b c d^4 \text{Li}_2(-c x)+2 b c d^4 \text{Li}_2(c x)+\left (b c d^4\right ) \int \frac{1}{x \left (1-c^2 x^2\right )} \, dx+\left (6 b c^2 d^4\right ) \int \tanh ^{-1}(c x) \, dx-\left (2 b c^4 d^4\right ) \int \frac{x^2}{1-c^2 x^2} \, dx-\frac{1}{3} \left (b c^5 d^4\right ) \int \frac{x^3}{1-c^2 x^2} \, dx\\ &=6 a c^2 d^4 x+2 b c^2 d^4 x+6 b c^2 d^4 x \tanh ^{-1}(c x)-\frac{d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+2 c^3 d^4 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac{1}{3} c^4 d^4 x^3 \left (a+b \tanh ^{-1}(c x)\right )+4 a c d^4 \log (x)-2 b c d^4 \text{Li}_2(-c x)+2 b c d^4 \text{Li}_2(c x)+\frac{1}{2} \left (b c d^4\right ) \operatorname{Subst}\left (\int \frac{1}{x \left (1-c^2 x\right )} \, dx,x,x^2\right )-\left (2 b c^2 d^4\right ) \int \frac{1}{1-c^2 x^2} \, dx-\left (6 b c^3 d^4\right ) \int \frac{x}{1-c^2 x^2} \, dx-\frac{1}{6} \left (b c^5 d^4\right ) \operatorname{Subst}\left (\int \frac{x}{1-c^2 x} \, dx,x,x^2\right )\\ &=6 a c^2 d^4 x+2 b c^2 d^4 x-2 b c d^4 \tanh ^{-1}(c x)+6 b c^2 d^4 x \tanh ^{-1}(c x)-\frac{d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+2 c^3 d^4 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac{1}{3} c^4 d^4 x^3 \left (a+b \tanh ^{-1}(c x)\right )+4 a c d^4 \log (x)+3 b c d^4 \log \left (1-c^2 x^2\right )-2 b c d^4 \text{Li}_2(-c x)+2 b c d^4 \text{Li}_2(c x)+\frac{1}{2} \left (b c d^4\right ) \operatorname{Subst}\left (\int \frac{1}{x} \, dx,x,x^2\right )+\frac{1}{2} \left (b c^3 d^4\right ) \operatorname{Subst}\left (\int \frac{1}{1-c^2 x} \, dx,x,x^2\right )-\frac{1}{6} \left (b c^5 d^4\right ) \operatorname{Subst}\left (\int \left (-\frac{1}{c^2}-\frac{1}{c^2 \left (-1+c^2 x\right )}\right ) \, dx,x,x^2\right )\\ &=6 a c^2 d^4 x+2 b c^2 d^4 x+\frac{1}{6} b c^3 d^4 x^2-2 b c d^4 \tanh ^{-1}(c x)+6 b c^2 d^4 x \tanh ^{-1}(c x)-\frac{d^4 \left (a+b \tanh ^{-1}(c x)\right )}{x}+2 c^3 d^4 x^2 \left (a+b \tanh ^{-1}(c x)\right )+\frac{1}{3} c^4 d^4 x^3 \left (a+b \tanh ^{-1}(c x)\right )+4 a c d^4 \log (x)+b c d^4 \log (x)+\frac{8}{3} b c d^4 \log \left (1-c^2 x^2\right )-2 b c d^4 \text{Li}_2(-c x)+2 b c d^4 \text{Li}_2(c x)\\ \end{align*}

Mathematica [A]  time = 0.175252, size = 194, normalized size = 1.09 \[ \frac{d^4 \left (-12 b c x \text{PolyLog}(2,-c x)+12 b c x \text{PolyLog}(2,c x)+2 a c^4 x^4+12 a c^3 x^3+36 a c^2 x^2+24 a c x \log (x)-6 a+b c^3 x^3+12 b c^2 x^2+15 b c x \log \left (1-c^2 x^2\right )+b c x \log \left (c^2 x^2-1\right )+2 b c^4 x^4 \tanh ^{-1}(c x)+12 b c^3 x^3 \tanh ^{-1}(c x)+36 b c^2 x^2 \tanh ^{-1}(c x)+6 b c x \log (c x)+6 b c x \log (1-c x)-6 b c x \log (c x+1)-6 b \tanh ^{-1}(c x)\right )}{6 x} \]

Warning: Unable to verify antiderivative.

[In]

Integrate[((d + c*d*x)^4*(a + b*ArcTanh[c*x]))/x^2,x]

[Out]

(d^4*(-6*a + 36*a*c^2*x^2 + 12*b*c^2*x^2 + 12*a*c^3*x^3 + b*c^3*x^3 + 2*a*c^4*x^4 - 6*b*ArcTanh[c*x] + 36*b*c^
2*x^2*ArcTanh[c*x] + 12*b*c^3*x^3*ArcTanh[c*x] + 2*b*c^4*x^4*ArcTanh[c*x] + 24*a*c*x*Log[x] + 6*b*c*x*Log[c*x]
 + 6*b*c*x*Log[1 - c*x] - 6*b*c*x*Log[1 + c*x] + 15*b*c*x*Log[1 - c^2*x^2] + b*c*x*Log[-1 + c^2*x^2] - 12*b*c*
x*PolyLog[2, -(c*x)] + 12*b*c*x*PolyLog[2, c*x]))/(6*x)

________________________________________________________________________________________

Maple [A]  time = 0.049, size = 229, normalized size = 1.3 \begin{align*}{\frac{{d}^{4}a{c}^{4}{x}^{3}}{3}}+2\,{d}^{4}a{c}^{3}{x}^{2}+6\,a{c}^{2}{d}^{4}x-{\frac{{d}^{4}a}{x}}+4\,c{d}^{4}a\ln \left ( cx \right ) +{\frac{{d}^{4}b{\it Artanh} \left ( cx \right ){c}^{4}{x}^{3}}{3}}+2\,{d}^{4}b{\it Artanh} \left ( cx \right ){c}^{3}{x}^{2}+6\,b{c}^{2}{d}^{4}x{\it Artanh} \left ( cx \right ) -{\frac{{d}^{4}b{\it Artanh} \left ( cx \right ) }{x}}+4\,c{d}^{4}b{\it Artanh} \left ( cx \right ) \ln \left ( cx \right ) -2\,c{d}^{4}b{\it dilog} \left ( cx \right ) -2\,c{d}^{4}b{\it dilog} \left ( cx+1 \right ) -2\,c{d}^{4}b\ln \left ( cx \right ) \ln \left ( cx+1 \right ) +{\frac{b{c}^{3}{d}^{4}{x}^{2}}{6}}+2\,b{c}^{2}{d}^{4}x+{\frac{11\,c{d}^{4}b\ln \left ( cx-1 \right ) }{3}}+c{d}^{4}b\ln \left ( cx \right ) +{\frac{5\,c{d}^{4}b\ln \left ( cx+1 \right ) }{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int((c*d*x+d)^4*(a+b*arctanh(c*x))/x^2,x)

[Out]

1/3*d^4*a*c^4*x^3+2*d^4*a*c^3*x^2+6*a*c^2*d^4*x-d^4*a/x+4*c*d^4*a*ln(c*x)+1/3*d^4*b*arctanh(c*x)*c^4*x^3+2*d^4
*b*arctanh(c*x)*c^3*x^2+6*b*c^2*d^4*x*arctanh(c*x)-d^4*b*arctanh(c*x)/x+4*c*d^4*b*arctanh(c*x)*ln(c*x)-2*c*d^4
*b*dilog(c*x)-2*c*d^4*b*dilog(c*x+1)-2*c*d^4*b*ln(c*x)*ln(c*x+1)+1/6*b*c^3*d^4*x^2+2*b*c^2*d^4*x+11/3*c*d^4*b*
ln(c*x-1)+c*d^4*b*ln(c*x)+5/3*c*d^4*b*ln(c*x+1)

________________________________________________________________________________________

Maxima [A]  time = 1.46349, size = 379, normalized size = 2.13 \begin{align*} \frac{1}{3} \, a c^{4} d^{4} x^{3} + 2 \, a c^{3} d^{4} x^{2} + \frac{1}{6} \, b c^{3} d^{4} x^{2} + 6 \, a c^{2} d^{4} x + 2 \, b c^{2} d^{4} x + 3 \,{\left (2 \, c x \operatorname{artanh}\left (c x\right ) + \log \left (-c^{2} x^{2} + 1\right )\right )} b c d^{4} - 2 \,{\left (\log \left (c x\right ) \log \left (-c x + 1\right ) +{\rm Li}_2\left (-c x + 1\right )\right )} b c d^{4} + 2 \,{\left (\log \left (c x + 1\right ) \log \left (-c x\right ) +{\rm Li}_2\left (c x + 1\right )\right )} b c d^{4} - \frac{5}{6} \, b c d^{4} \log \left (c x + 1\right ) + \frac{7}{6} \, b c d^{4} \log \left (c x - 1\right ) + 4 \, a c d^{4} \log \left (x\right ) - \frac{1}{2} \,{\left (c{\left (\log \left (c^{2} x^{2} - 1\right ) - \log \left (x^{2}\right )\right )} + \frac{2 \, \operatorname{artanh}\left (c x\right )}{x}\right )} b d^{4} - \frac{a d^{4}}{x} + \frac{1}{6} \,{\left (b c^{4} d^{4} x^{3} + 6 \, b c^{3} d^{4} x^{2}\right )} \log \left (c x + 1\right ) - \frac{1}{6} \,{\left (b c^{4} d^{4} x^{3} + 6 \, b c^{3} d^{4} x^{2}\right )} \log \left (-c x + 1\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^4*(a+b*arctanh(c*x))/x^2,x, algorithm="maxima")

[Out]

1/3*a*c^4*d^4*x^3 + 2*a*c^3*d^4*x^2 + 1/6*b*c^3*d^4*x^2 + 6*a*c^2*d^4*x + 2*b*c^2*d^4*x + 3*(2*c*x*arctanh(c*x
) + log(-c^2*x^2 + 1))*b*c*d^4 - 2*(log(c*x)*log(-c*x + 1) + dilog(-c*x + 1))*b*c*d^4 + 2*(log(c*x + 1)*log(-c
*x) + dilog(c*x + 1))*b*c*d^4 - 5/6*b*c*d^4*log(c*x + 1) + 7/6*b*c*d^4*log(c*x - 1) + 4*a*c*d^4*log(x) - 1/2*(
c*(log(c^2*x^2 - 1) - log(x^2)) + 2*arctanh(c*x)/x)*b*d^4 - a*d^4/x + 1/6*(b*c^4*d^4*x^3 + 6*b*c^3*d^4*x^2)*lo
g(c*x + 1) - 1/6*(b*c^4*d^4*x^3 + 6*b*c^3*d^4*x^2)*log(-c*x + 1)

________________________________________________________________________________________

Fricas [F]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{a c^{4} d^{4} x^{4} + 4 \, a c^{3} d^{4} x^{3} + 6 \, a c^{2} d^{4} x^{2} + 4 \, a c d^{4} x + a d^{4} +{\left (b c^{4} d^{4} x^{4} + 4 \, b c^{3} d^{4} x^{3} + 6 \, b c^{2} d^{4} x^{2} + 4 \, b c d^{4} x + b d^{4}\right )} \operatorname{artanh}\left (c x\right )}{x^{2}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^4*(a+b*arctanh(c*x))/x^2,x, algorithm="fricas")

[Out]

integral((a*c^4*d^4*x^4 + 4*a*c^3*d^4*x^3 + 6*a*c^2*d^4*x^2 + 4*a*c*d^4*x + a*d^4 + (b*c^4*d^4*x^4 + 4*b*c^3*d
^4*x^3 + 6*b*c^2*d^4*x^2 + 4*b*c*d^4*x + b*d^4)*arctanh(c*x))/x^2, x)

________________________________________________________________________________________

Sympy [F]  time = 0., size = 0, normalized size = 0. \begin{align*} d^{4} \left (\int 6 a c^{2}\, dx + \int \frac{a}{x^{2}}\, dx + \int \frac{4 a c}{x}\, dx + \int 4 a c^{3} x\, dx + \int a c^{4} x^{2}\, dx + \int 6 b c^{2} \operatorname{atanh}{\left (c x \right )}\, dx + \int \frac{b \operatorname{atanh}{\left (c x \right )}}{x^{2}}\, dx + \int \frac{4 b c \operatorname{atanh}{\left (c x \right )}}{x}\, dx + \int 4 b c^{3} x \operatorname{atanh}{\left (c x \right )}\, dx + \int b c^{4} x^{2} \operatorname{atanh}{\left (c x \right )}\, dx\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)**4*(a+b*atanh(c*x))/x**2,x)

[Out]

d**4*(Integral(6*a*c**2, x) + Integral(a/x**2, x) + Integral(4*a*c/x, x) + Integral(4*a*c**3*x, x) + Integral(
a*c**4*x**2, x) + Integral(6*b*c**2*atanh(c*x), x) + Integral(b*atanh(c*x)/x**2, x) + Integral(4*b*c*atanh(c*x
)/x, x) + Integral(4*b*c**3*x*atanh(c*x), x) + Integral(b*c**4*x**2*atanh(c*x), x))

________________________________________________________________________________________

Giac [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{{\left (c d x + d\right )}^{4}{\left (b \operatorname{artanh}\left (c x\right ) + a\right )}}{x^{2}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate((c*d*x+d)^4*(a+b*arctanh(c*x))/x^2,x, algorithm="giac")

[Out]

integrate((c*d*x + d)^4*(b*arctanh(c*x) + a)/x^2, x)